deepFPlearn +: enhancing toxicity prediction across the chemical universe using graph neural networks

Author:

Soulios Kyriakos12ORCID,Scheibe Patrick3ORCID,Bernt Matthias1ORCID,Hackermüller Jörg12ORCID,Schor Jana1ORCID

Affiliation:

1. Department of Computation Biology, Helmholtz Centre for Environmental Research – UFZ , 04318 Leipzig, Germany

2. Department of Computer Science, Faculty of Mathematics and Computer Science, University of Leipzig , 04109 Leipzig, Germany

3. Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences , 04103 Leipzig, Saxony, Germany

Abstract

Abstract Summary Sophisticated approaches for the in silico prediction of toxicity are required to support the risk assessment of chemicals. The number of chemicals on the global chemical market and the speed of chemical innovation stand in massive contrast to the capacity for regularizing chemical use. We recently proved our ready-to-use application deepFPlearn as a suitable approach for this task. Here, we present its extension deepFPlearn+ incorporating (i) a graph neural network to feed our AI with a more sophisticated molecular structure representation and (ii) alternative train-test splitting strategies that involve scaffold structures and the molecular weights of chemicals. We show that the GNNs outperform the previous model substantially and that our models can generalize on unseen data even with a more robust and challenging test set. Therefore, we highly recommend the application of deepFPlearn+ on the chemical inventory to prioritize chemicals for experimental testing or any chemical subset of interest in monitoring studies. Availability and implementation The software is compatible with python 3.6 or higher, and the source code can be found on our GitHub repository: https://github.com/yigbt/deepFPlearn. The data underlying this article are available in Zenodo, and can be accessed with the link below: https://zenodo.org/record/8146252. Detailed installation guides via Docker, Singularity, and Conda are provided within the repository for operability across all operating systems.

Funder

European Partnership for the Assessment of Risks from Chemicals

European Union’s Horizon Europe research and innovation program

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference12 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3