Embeddings of genomic region sets capture rich biological associations in lower dimensions

Author:

Gharavi Erfaneh12,Gu Aaron13,Zheng Guangtao3,Smith Jason P14,Cho Hyun Jae13,Zhang Aidong3,Brown Donald E2,Sheffield Nathan C12456ORCID

Affiliation:

1. Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA

2. School of Data Science, University of Virginia, Charlottesville, VA 22903, USA

3. Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA

4. Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA

5. Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22903, USA

6. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA

Abstract

Abstract Motivation Genomic region sets summarize functional genomics data and define locations of interest in the genome such as regulatory regions or transcription factor binding sites. The number of publicly available region sets has increased dramatically, leading to challenges in data analysis. Results We propose a new method to represent genomic region sets as vectors, or embeddings, using an adapted word2vec approach. We compared our approach to two simpler methods based on interval unions or term frequency-inverse document frequency and evaluated the methods in three ways: First, by classifying the cell line, antibody or tissue type of the region set; second, by assessing whether similarity among embeddings can reflect simulated random perturbations of genomic regions; and third, by testing robustness of the proposed representations to different signal thresholds for calling peaks. Our word2vec-based region set embeddings reduce dimensionality from more than a hundred thousand to 100 without significant loss in classification performance. The vector representation could identify cell line, antibody and tissue type with over 90% accuracy. We also found that the vectors could quantitatively summarize simulated random perturbations to region sets and are more robust to subsampling the data derived from different peak calling thresholds. Our evaluations demonstrate that the vectors retain useful biological information in relatively lower-dimensional spaces. We propose that vector representation of region sets is a promising approach for efficient analysis of genomic region data. Availability and implementation https://github.com/databio/regionset-embedding. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3