Affiliation:
1. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”
2. Dipartimento di Ingegneria, University of Palermo, Palermo I-90128, Italy
Abstract
Abstract
Motivation
New in silico tools to predict biological affinities for input structures are presented. The tools are implemented in the DRUDIT (DRUgs DIscovery Tools) web service. The DRUDIT biological finder module is based on molecular descriptors that are calculated by the MOLDESTO (MOLecular DEScriptors TOol) software module developed by the same authors, which is able to calculate more than one thousand molecular descriptors. At this stage, DRUDIT includes 250 biological targets, but new external targets can be added. This feature extends the application scope of DRUDIT to several fields. Moreover, two more functions are implemented: the multi- and on/off-target tasks. These tools applied to input structures allow for predicting the polypharmacology and evaluating the collateral effects.
Results
The applications described in the article show that DRUDIT is able to predict a single biological target, to identify similarities among biological targets, and to discriminate different target isoforms. The main advantages of DRUDIT for the scientific community lie in its ease of use by worldwide scientists and the possibility to be used also without specific, and often expensive, hardware and software. In fact, it is fully accessible through the WWW from any device to perform calculations. Just a click or a tap can start tasks to predict biological properties for new compounds or repurpose drugs, lead compounds, or unsuccessful compounds. To date, DRUDIT is supported by four servers each able to execute 8 jobs simultaneously.
Availability and implementation
The web service is accessible at the www.drudit.com URL and its use is free of charge.
Supplementary information
Supplementary data are available at Bioinformatics online.
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献