DeepOM: single-molecule optical genome mapping via deep learning

Author:

Nogin Yevgeni1ORCID,Detinis Zur Tahir2,Margalit Sapir2,Barzilai Ilana3,Alalouf Onit34,Ebenstein Yuval25ORCID,Shechtman Yoav134

Affiliation:

1. Russel Berrie Nanotechnology Institute, Technion , Haifa 320003, Israel

2. Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 6997801, Israel

3. Department of Biomedical Engineering, Technion , Haifa 320003, Israel

4. Lorry I. Lokey Center for Life Sciences and Engineering, Technion , Haifa 320003, Israel

5. Department of Biomedical Engineering, Tel Aviv University , Tel Aviv 6997801, Israel

Abstract

Abstract Motivation Efficient tapping into genomic information from a single microscopic image of an intact DNA molecule is an outstanding challenge and its solution will open new frontiers in molecular diagnostics. Here, a new computational method for optical genome mapping utilizing deep learning is presented, termed DeepOM. Utilization of a convolutional neural network, trained on simulated images of labeled DNA molecules, improves the success rate in the alignment of DNA images to genomic references. Results The method is evaluated on acquired images of human DNA molecules stretched in nano-channels. The accuracy of the method is benchmarked against state-of-the-art commercial software Bionano Solve. The results show a significant advantage in alignment success rate for molecules shorter than 50 kb. DeepOM improves the yield, sensitivity, and throughput of optical genome mapping experiments in applications of human genomics and microbiology. Availability and implementation The source code for the presented method is publicly available at https://github.com/yevgenin/DeepOM.

Funder

European Research Council Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3