SpatialQC: automated quality control for spatial transcriptome data

Author:

Mao Guangyao12ORCID,Yang Yi1ORCID,Luo Zhuojuan1234ORCID,Lin Chengqi1234,Xie Peng5ORCID

Affiliation:

1. Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University , Nanjing 210000, China

2. Co-innovation Center of Neuroregeneration, Nantong University , Nantong 226000, China

3. Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital , Fuzhou 350000, China

4. Shenzhen Research Institute, Southeast University , Shenzhen, China

5. School of Biological Science & Medical Engineering, Southeast University , Nanjing 518000, China

Abstract

Abstract Summary The advent of spatial transcriptomics has revolutionized our understanding of the spatial heterogeneity in tissues, providing unprecedented insights into the cellular and molecular mechanisms underlying biological processes. Although quality control (QC) critical for downstream data analyses, there is currently a lack of specialized tools for one-stop spatial transcriptome QC. Here, we introduce SpatialQC, a one-stop QC pipeline, which generates comprehensive QC reports and produces clean data in an interactive fashion. SpatialQC is widely applicable to spatial transcriptomic techniques. Availability and implementation source code and user manuals are available via https://github.com/mgy520/spatialQC, and deposited on Zenodo (https://doi.org/10.5281/zenodo.12634669).

Funder

National Key R&D Program of China

Publisher

Oxford University Press (OUP)

Reference19 articles.

1. Orchestrating single-cell analysis with Bioconductor;Amezquita;Nat Methods,2020

2. The continuum of Drosophila embryonic development at single-cell resolution;Calderon;Science,2022

3. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays;Chen;Cell,2022

4. SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics;Gong;GigaByte,2024

5. popsicleR: a R package for pre-processing and quality control analysis of single cell RNA-seq data;Grandi;J Mol Biol,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3