Scalable integration of multiomic single-cell data using generative adversarial networks

Author:

Giansanti Valentina12ORCID,Giannese Francesca2ORCID,Botrugno Oronza A34ORCID,Gandolfi Giorgia2ORCID,Balestrieri Chiara25ORCID,Antoniotti Marco167ORCID,Tonon Giovanni234ORCID,Cittaro Davide2ORCID

Affiliation:

1. Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca , Milan, 20125, Italy

2. Center for Omics Sciences, IRCCS San Raffaele Scientific Institute , Milan, 20132, Italy

3. Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute , Milan, 20132, Italy

4. Università Vita-Salute San Raffaele , Milan, 20132, Italy

5. Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute , Milan, 20132, Italy

6. Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Università degli Studi di Milano-Bicocca , Milan, 20125, Italy

7. Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche (CNR) , Milan, 20090, Italy

Abstract

Abstract Motivation Single-cell profiling has become a common practice to investigate the complexity of tissues, organs, and organisms. Recent technological advances are expanding our capabilities to profile various molecular layers beyond the transcriptome such as, but not limited to, the genome, the epigenome, and the proteome. Depending on the experimental procedure, these data can be obtained from separate assays or the very same cells. Yet, integration of more than two assays is currently not supported by the majority of the computational frameworks avaiable. Results We here propose a Multi-Omic data integration framework based on Wasserstein Generative Adversarial Networks suitable for the analysis of paired or unpaired data with a high number of modalities (>2). At the core of our strategy is a single network trained on all modalities together, limiting the computational burden when many molecular layers are evaluated. Availability and implementation Source code of our framework is available at https://github.com/vgiansanti/MOWGAN

Funder

Italian Ministry of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3