Affiliation:
1. School of Computer Science and Technology, Donghua University , Shanghai 201620, China
2. School of Computer Engineering and Science, Shanghai University , Shanghai 200444, China
Abstract
Abstract
Motivation
Gene regulatory networks (GRNs) encode gene regulation in living organisms, and have become a critical tool to understand complex biological processes. However, due to the dynamic and complex nature of gene regulation, inferring GRNs from scRNA-seq data is still a challenging task. Existing computational methods usually focus on the close connections between genes, and ignore the global structure and distal regulatory relationships.
Results
In this study, we develop a supervised deep learning framework, IGEGRNS, to infer GRNs from scRNA-seq data based on graph embedding. In the framework, contextual information of genes is captured by GraphSAGE, which aggregates gene features and neighborhood structures to generate low-dimensional embedding for genes. Then, the k most influential nodes in the whole graph are filtered through Top-k pooling. Finally, potential regulatory relationships between genes are predicted by stacking CNNs. Compared with nine competing supervised and unsupervised methods, our method achieves better performance on six time-series scRNA-seq datasets.
Availability and implementation
Our method IGEGRNS is implemented in Python using the Pytorch machine learning library, and it is freely available at https://github.com/DHUDBlab/IGEGRNS.
Funder
National Natural Science Foundation of China
Shanghai Natural Science Foundation
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献