AssessORF: combining evolutionary conservation and proteomics to assess prokaryotic gene predictions

Author:

Korandla Deepank R123ORCID,Wozniak Jacob M45,Campeau Anaamika45,Gonzalez David J45,Wright Erik S3ORCID

Affiliation:

1. Department of Biological Sciences, USA

2. Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

3. Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA

4. Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA

5. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA

Abstract

Abstract Motivation A core task of genomics is to identify the boundaries of protein coding genes, which may cover over 90% of a prokaryote's genome. Several programs are available for gene finding, yet it is currently unclear how well these programs perform and whether any offers superior accuracy. This is in part because there is no universal benchmark for gene finding and, therefore, most developers select their own benchmarking strategy. Results Here, we introduce AssessORF, a new approach for benchmarking prokaryotic gene predictions based on evidence from proteomics data and the evolutionary conservation of start and stop codons. We applied AssessORF to compare gene predictions offered by GenBank, GeneMarkS-2, Glimmer and Prodigal on genomes spanning the prokaryotic tree of life. Gene predictions were 88–95% in agreement with the available evidence, with Glimmer performing the worst but no clear winner. All programs were biased towards selecting start codons that were upstream of the actual start. Given these findings, there remains considerable room for improvement, especially in the detection of correct start sites. Availability and implementation AssessORF is available as an R package via the Bioconductor package repository. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIAID at NIH

UCSD Graduate Training Program in Cellular and Molecular Pharmacology

NIAMS

UCSD Microbial Sciences Initiative Graduate Research Fellowship

NIGMS

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3