Figure and caption extraction from biomedical documents

Author:

Li Pengyuan1,Jiang Xiangying1,Shatkay Hagit1

Affiliation:

1. Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA

Abstract

Abstract Motivation Figures and captions convey essential information in biomedical documents. As such, there is a growing interest in mining published biomedical figures and in utilizing their respective captions as a source of knowledge. Notably, an essential step underlying such mining is the extraction of figures and captions from publications. While several PDF parsing tools that extract information from such documents are publicly available, they attempt to identify images by analyzing the PDF encoding and structure and the complex graphical objects embedded within. As such, they often incorrectly identify figures and captions in scientific publications, whose structure is often non-trivial. The extraction of figures, captions and figure-caption pairs from biomedical publications is thus neither well-studied nor yet well-addressed. Results We introduce a new and effective system for figure and caption extraction, PDFigCapX. Unlike existing methods, we first separate between text and graphical contents, and then utilize layout information to effectively detect and extract figures and captions. We generate files containing the figures and their associated captions and provide those as output to the end-user. We test our system both over a public dataset of computer science documents previously used by others, and over two newly collected sets of publications focusing on the biomedical domain. Our experiments and results comparing PDFigCapX to other state-of-the-art systems show a significant improvement in performance, and demonstrate the effectiveness and robustness of our approach. Availability and implementation Our system is publicly available for use at: https://www.eecis.udel.edu/~compbio/PDFigCapX. The two new datasets are available at: https://www.eecis.udel.edu/~compbio/PDFigCapX/Downloads

Funder

National Institutes of Health

National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Datasets and annotations for layout analysis of scientific articles;International Journal on Document Analysis and Recognition (IJDAR);2024-03-18

2. MouseScholar: Evaluating an Image+Text Search System for Biocuration;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. Drug discovery for COVID-19 and related mutations using artificial intelligence;Research Journal of Pharmacy and Technology;2023-11-30

4. Automated scholarly paper review: Concepts, technologies, and challenges;Information Fusion;2023-10

5. An automatic system for extracting figure-caption pair from medical documents: a six-fold approach;PeerJ Computer Science;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3