Deep learning of protein sequence design of protein–protein interactions

Author:

Syrlybaeva Raulia1,Strauch Eva-Maria12ORCID

Affiliation:

1. Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, GA 30602, USA

2. Institute of Bioinformatics, University of Georgia , Athens, GA 30602, USA

Abstract

AbstractMotivationAs more data of experimentally determined protein structures are becoming available, data-driven models to describe protein sequence–structure relationships become more feasible. Within this space, the amino acid sequence design of protein–protein interactions is still a rather challenging subproblem with very low success rates—yet, it is central to most biological processes.ResultsWe developed an attention-based deep learning model inspired by algorithms used for image-caption assignments to design peptides or protein fragment sequences. Our trained model can be applied for the redesign of natural protein interfaces or the designed protein interaction fragments. Here, we validate the potential by recapitulating naturally occurring protein–protein interactions including antibody–antigen complexes. The designed interfaces accurately capture essential native interactions and have comparable native-like binding affinities in silico. Furthermore, our model does not need a precise backbone location, making it an attractive tool for working with de novo design of protein–protein interactions.Availability and implementationThe source code of the method is available at https://github.com/strauchlab/iNNterfaceDesignSupplementary informationSupplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

NIH

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3