EvoAug-TF: extending evolution-inspired data augmentations for genomic deep learning to TensorFlow

Author:

Yu Yiyang1ORCID,Muthukumar Shivani2,Koo Peter K1ORCID

Affiliation:

1. Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory , Cold Spring Harbor, NY 11724, United States

2. Commack High School , Commack, NY 11725, United States

Abstract

Abstract Summary Deep neural networks (DNNs) have been widely applied to predict the molecular functions of the non-coding genome. DNNs are data hungry and thus require many training examples to fit data well. However, functional genomics experiments typically generate limited amounts of data, constrained by the activity levels of the molecular function under study inside the cell. Recently, EvoAug was introduced to train a genomic DNN with evolution-inspired augmentations. EvoAug-trained DNNs have demonstrated improved generalization and interpretability with attribution analysis. However, EvoAug only supports PyTorch-based models, which limits its applications to a broad class of genomic DNNs based in TensorFlow. Here, we extend EvoAug’s functionality to TensorFlow in a new package, we call EvoAug-TF. Through a systematic benchmark, we find that EvoAug-TF yields comparable performance with the original EvoAug package. Availability and implementation EvoAug-TF is freely available for users and is distributed under an open-source MIT license. Researchers can access the open-source code on GitHub (https://github.com/p-koo/evoaug-tf). The pre-compiled package is provided via PyPI (https://pypi.org/project/evoaug-tf) with in-depth documentation on ReadTheDocs (https://evoaug-tf.readthedocs.io). The scripts for reproducing the results are available at (https://github.com/p-koo/evoaug-tf_analysis).

Funder

National Institute of General Medical Sciences

National Institutes of Health

National Human Genome Research Institute of the National Institutes of Health

US National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3