Per-sample standardization and asymmetric winsorization lead to accurate clustering of RNA-seq expression profiles

Author:

Risso Davide1ORCID,Pagnotta Stefano Maria2ORCID

Affiliation:

1. Department of Statistical Sciences, Università degli Studi di Padova, Padova, Italy

2. Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy

Abstract

Abstract Motivation Data transformations are an important step in the analysis of RNA-seq data. Nonetheless, the impact of transformation on the outcome of unsupervised clustering procedures is still unclear. Results Here, we present an Asymmetric Winsorization per-Sample Transformation (AWST), which is robust to data perturbations and removes the need for selecting the most informative genes prior to sample clustering. Our procedure leads to robust and biologically meaningful clusters both in bulk and in single-cell applications. Availability and implementation The AWST method is available at https://github.com/drisso/awst. The code to reproduce the analyses is available at https://github.com/drisso/awst_analysis Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Silicon Valley Community Foundation

National Institutes of Health

AIRC Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference47 articles.

1. Differential expression analysis for sequence count data;Anders;Genome Biol,2010

2. A class of distributions which includes the normal ones;Azzalini;Scand. J. Stat,1985

3. Fast unfolding of communities in large networks;Blondel;J. Stat. Mech,2008

4. Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments;Bullard;BMC Bioinform,2010

5. A dendrite method for cluster analysis;Calinski;Commun. Stat,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3