A convolutional neural network and graph convolutional network-based method for predicting the classification of anatomical therapeutic chemicals

Author:

Zhao Haochen1,Li Yaohang2,Wang Jianxin1ORCID

Affiliation:

1. Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0001, USA

Abstract

Abstract Motivation The Anatomical Therapeutic Chemical (ATC) system is an official classification system established by the World Health Organization for medicines. Correctly assigning ATC classes to given compounds is an important research problem in drug discovery, which can not only discover the possible active ingredients of the compounds, but also infer theirs therapeutic, pharmacological and chemical properties. Results In this article, we develop an end-to-end multi-label classifier called CGATCPred to predict 14 main ATC classes for given compounds. In order to extract rich features of each compound, we use the deep Convolutional Neural Network and shortcut connections to represent and learn the seven association scores between the given compound and others. Moreover, we construct the correlation graph of ATC classes and then apply graph convolutional network on the graph for label embedding abstraction. We use all label embedding to guide the learning process of compound representation. As a result, by using the Jackknife test, CGATCPred obtain reliable Aiming of 81.94%, Coverage of 82.88%, Accuracy 80.81%, Absolute True 76.58% and Absolute False 2.75%, yielding significantly improvements compared to exiting multi-label classifiers. Availability and implementation The codes of CGATCPred are available at https://github.com/zhc940702/CGATCPred and https://zenodo.org/record/4552917.

Funder

NSFC-Zhejiang Joint Fund

National Natural Science Foundation of China

111 Project

Hunan Provinvial Science and Technology Program

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3