Inferring the experimental design for accurate gene regulatory network inference

Author:

Seçilmiş Deniz1ORCID,Hillerton Thomas1,Nelander Sven2,Sonnhammer Erik L L1

Affiliation:

1. Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden

2. Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, SE-75185 Uppsala, Sweden

Abstract

Abstract Motivation Accurate inference of gene regulatory interactions is of importance for understanding the mechanisms of underlying biological processes. For gene expression data gathered from targeted perturbations, gene regulatory network (GRN) inference methods that use the perturbation design are the top performing methods. However, the connection between the perturbation design and gene expression can be obfuscated due to problems, such as experimental noise or off-target effects, limiting the methods’ ability to reconstruct the true GRN. Results In this study, we propose an algorithm, IDEMAX, to infer the effective perturbation design from gene expression data in order to eliminate the potential risk of fitting a disconnected perturbation design to gene expression. We applied IDEMAX to synthetic data from two different data generation tools, GeneNetWeaver and GeneSPIDER, and assessed its effect on the experiment design matrix as well as the accuracy of the GRN inference, followed by application to a real dataset. The results show that our approach consistently improves the accuracy of GRN inference compared to using the intended perturbation design when much of the signal is hidden by noise, which is often the case for real data. Availability and implementation https://bitbucket.org/sonnhammergrni/idemax. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Swedish Foundation for Strategic Research

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3