NewWave: a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA-seq data

Author:

Agostinis Federico1ORCID,Romualdi Chiara1ORCID,Sales Gabriele1,Risso Davide2ORCID

Affiliation:

1. Department of Biology, Università degli Studi di Padova , Padova 35100, Italy

2. Department of Statistical Science, Università degli studi di Padova , Padova 35100, Italy

Abstract

Abstract Summary We present NewWave, a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA sequencing data. To achieve scalability, NewWave uses mini-batch optimization and can work with out-of-memory data, enabling users to analyze datasets with millions of cells. Availability and implementation NewWave is implemented as an open-source R package available through the Bioconductor project at https://bioconductor.org/packages/NewWave/ Supplementary information Supplementary data are available at Bioinformatics online.

Funder

AIRC Foundation for Cancer Research in Italy [AIRC

National Cancer Institute of the National Institutes of Health

Chan Zuckerberg Initiative DAF

Silicon Valley Community Foundation and by University of Padova Strategic Research Infrastructure Grant 2017

CAPRI: Calcolo ad Alte Prestazioni per la Ricerca e l’Innovazione

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference7 articles.

1. Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis;Raimundo;Genome Biol,2020

2. A general and flexible method for signal extraction from single-cell RNA-seq data;Risso;Nat. Commun,2018

3. Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis;Sun;Genome Biol,2019

4. Droplet scRNA-seq is not zero-inflated;Svensson;Nat. Biotechnol,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3