The K-mer File Format: a standardized and compact disk representation of sets of k-mers

Author:

Dufresne Yoann1ORCID,Lemane Teo2ORCID,Marijon Pierre3,Peterlongo Pierre2ORCID,Rahman Amatur4,Kokot Marek5,Medvedev Paul467ORCID,Deorowicz Sebastian5,Chikhi Rayan1

Affiliation:

1. Computational Biology Department, Institut Pasteur, Université Paris Cité , F-75015 Paris, France

2. Univ Rennes, Inria, CNRS, IRISA—UMR , 6074 Rennes, France

3. Heinrich Heine University Düsseldorf Medical Faculty Institute for Medical Biometry and Bioinformatic , Düsseldorf 40225, Germany

4. Department of Computer Science and Engineering, The Pennsylvania State University , State College 16802, USA

5. Department of Algorithmics and Software, Silesian University of Technology, Gliwice , PL-44-100 Akademicka 16, Poland

6. Department of Biochemistry and Molecular Biology, The Pennsylvania State University , State College 16801, USA

7. Huck Institutes of the Life Sciences, The Pennsylvania State University , State College 16802, USA

Abstract

Abstract Summary Bioinformatics applications increasingly rely on ad hoc disk storage of k-mer sets, e.g. for de Bruijn graphs or alignment indexes. Here, we introduce the K-mer File Format as a general lossless framework for storing and manipulating k-mer sets, realizing space savings of 3–5× compared to other formats, and bringing interoperability across tools. Availability and implementation Format specification, C++/Rust API, tools: https://github.com/Kmer-File-Format/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

ANR Inception

PRAIRIE

National Science Centre

National Science Foundation

European Union’s Horizon 2020 Research and Innovation Programme

Marie Skłodowska-Curie

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference15 articles.

1. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing;Bankevich;J. Comput. Biol,2012

2. Simplitigs as an efficient and scalable representation of de Bruijn graphs;Břinda;Genome Biol,2021

3. Data structures to represent a set of k-long DNA sequences;Chikhi;ACM Comput. Surv,2021

4. Disk-based k-mer counting on a PC;Deorowicz;BMC Bioinformatics,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3