Predicted dynamical couplings of protein residues characterize catalysis, transport and allostery

Author:

Alfayate Alvaro1,Rodriguez Caceres Carlos1,Gomes Dos Santos Helena1,Bastolla Ugo1

Affiliation:

1. Centro de Biologia Molecular “Severo Ochoa” CSIC-UAM Cantoblanco, Madrid, Spain

Abstract

Abstract Motivation Protein function is intrinsically linked to native dynamics, but the systematic characterization of functionally relevant dynamics remains elusive besides specific examples. Here we exhaustively characterize three types of dynamical couplings between protein residues: co-directionality (moving along collinear directions), coordination (small fluctuations of the interatomic distance) and deformation (the extent by which perturbations applied at one residue modify the local structure of the other one), which we analytically compute through the torsional network model. Results We find that ligand binding sites are characterized by large within-site coordination and co-directionality, much larger than expected for generic sets of residues with equivalent sequence distances. In addition, catalytic sites are characterized by high coordination couplings with other residues in the protein, supporting the view that the overall protein structure facilitates the catalytic dynamics. The binding sites of allosteric effectors are characterized by comparably smaller coordination and higher within-site deformation than other ligands, which supports their dynamic nature. Allosteric inhibitors are coupled to the active site more frequently through deformation than through coordination, while the contrary holds for activators. We characterize the dynamical couplings of the sodium-dependent Leucine transporter protein (LeuT). The couplings between and within sites progress consistently along the transport cycle, providing a mechanistic description of the coupling between the uptake and release of ions and substrate, and they highlight qualitative differences between the wild-type and a mutant for which chloride is necessary for transport. Availability and implementation The program tnm is freely available at https://github.com/ugobas/tnm Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Spanish government

Fundación Ramón Areces

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3