copMEM2: robust and scalable maximum exact match finding

Author:

Grabowski Szymon1ORCID,Bieniecki Wojciech1ORCID

Affiliation:

1. Institute of Applied Computer Science, Lodz University of Technology , 18 Stefanowskiego Street , Lodz, Poland

Abstract

Abstract Summary Finding Maximum Exact Matches, i.e. matches between two strings that cannot be further extended to the left or right, is a classic string problem with applications in genome-to-genome comparisons. The existing tools rarely explicitly address the problem of MEM finding for a pair of very similar genomes, which may be computationally challenging. We present copMEM2, a multithreaded implementation of its predecessor. Together with a few optimizations, including a carefully built predecessor query data structure and sort procedure selection, and taking care for highly similar data, copMEM2 allows to compute all MEMs of minimum length 50 between the human and mouse genomes in 59 s, using 10.40 GB of RAM and 12 threads, being at least a few times faster than its main contenders. On a pair of human genomes, hg18 and hg19, the results are 324 s and 16.57 GB, respectively. Availability and implementation copMEM2 is available at https://github.com/wbieniec/copmem2.

Funder

Lodz University of Technology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3