Deciphering high-order structures in spatial transcriptomes with graph-guided Tucker decomposition

Author:

Broadbent Charles1,Song Tianci1,Kuang Rui1

Affiliation:

1. Department of Computer Science and Engineering, University of Minnesota Twin Cities , Minneapolis, MN, 55455, United States

Abstract

Abstract Spatial transcripome (ST) profiling can reveal cells’ structural organizations and functional roles in tissues. However, deciphering the spatial context of gene expressions in ST data is a challenge—the high-order structure hiding in whole transcriptome space over 2D/3D spatial coordinates requires modeling and detection of interpretable high-order elements and components for further functional analysis and interpretation. This paper presents a new method GraphTucker—graph-regularized Tucker tensor decomposition for learning high-order factorization in ST data. GraphTucker is based on a nonnegative Tucker decomposition algorithm regularized by a high-order graph that captures spatial relation among spots and functional relation among genes. In the experiments on several Visium and Stereo-seq datasets, the novelty and advantage of modeling multiway multilinear relationships among the components in Tucker decomposition are demonstrated as opposed to the Canonical Polyadic Decomposition and conventional matrix factorization models by evaluation of detecting spatial components of gene modules, clustering spatial coefficients for tissue segmentation and imputing complete spatial transcriptomes. The results of visualization show strong evidence that GraphTucker detect more interpretable spatial components in the context of the spatial domains in the tissues. Availability and implementation https://github.com/kuanglab/GraphTucker.

Funder

National Science Foundation

NSF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3