pycofitness—Evaluating the fitness landscape of RNA and protein sequences

Author:

Pucci Fabrizio12ORCID,Zerihun Mehari B3,Rooman Marianne12,Schug Alexander34ORCID

Affiliation:

1. Computational Biology and Bioinformatics, Université Libre de Bruxelles , 1050 Brussels, Belgium

2. Interuniversity Institute of Bioinformatics in Brussels , 1050 Brussels, Belgium

3. John von Neumann Institute for Computing, Jülich Supercomputer Centre , 52428 Jülich, Germany

4. Department of Biology, University of Duisburg-Essen , D-45141 Essen, Germany

Abstract

Abstract Motivation The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. Results We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. Availability and implementation https://github.com/KIT-MBS/pycofitness.

Funder

Impuls- und Vernetzungfond of the Helmholtz Association

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3