Sapling: accelerating suffix array queries with learned data models

Author:

Kirsche Melanie1ORCID,Das Arun1ORCID,Schatz Michael C123

Affiliation:

1. Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA

2. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA

3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA

Abstract

Abstract Motivation As genomic data becomes more abundant, efficient algorithms and data structures for sequence alignment become increasingly important. The suffix array is a widely used data structure to accelerate alignment, but the binary search algorithm used to query, it requires widespread memory accesses, causing a large number of cache misses on large datasets. Results Here, we present Sapling, an algorithm for sequence alignment, which uses a learned data model to augment the suffix array and enable faster queries. We investigate different types of data models, providing an analysis of different neural network models as well as providing an open-source aligner with a compact, practical piecewise linear model. We show that Sapling outperforms both an optimized binary search approach and multiple widely used read aligners on a diverse collection of genomes, including human, bacteria and plants, speeding up the algorithm by more than a factor of two while adding <1% to the suffix array’s memory footprint. Availability and implementation The source code and tutorial are available open-source at https://github.com/mkirsche/sapling. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3