Optimal Bayesian supervised domain adaptation for RNA sequencing data

Author:

Boluki Shahin1ORCID,Qian Xiaoning12,Dougherty Edward R1

Affiliation:

1. Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77843, USA

2. TEES-AgriLife Center for Bioinformatics & Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract

Abstract Motivation When learning to subtype complex disease based on next-generation sequencing data, the amount of available data is often limited. Recent works have tried to leverage data from other domains to design better predictors in the target domain of interest with varying degrees of success. But they are either limited to the cases requiring the outcome label correspondence across domains or cannot leverage the label information at all. Moreover, the existing methods cannot usually benefit from other information available a priori such as gene interaction networks. Results In this article, we develop a generative optimal Bayesian supervised domain adaptation (OBSDA) model that can integrate RNA sequencing (RNA-Seq) data from different domains along with their labels for improving prediction accuracy in the target domain. Our model can be applied in cases where different domains share the same labels or have different ones. OBSDA is based on a hierarchical Bayesian negative binomial model with parameter factorization, for which the optimal predictor can be derived by marginalization of likelihood over the posterior of the parameters. We first provide an efficient Gibbs sampler for parameter inference in OBSDA. Then, we leverage the gene-gene network prior information and construct an informed and flexible variational family to infer the posterior distributions of model parameters. Comprehensive experiments on real-world RNA-Seq data demonstrate the superior performance of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different domains. Moreover, we show that by taking advantage of the prior network information we can further improve the performance. Availability and implementation The source code for implementations of OBSDA and SI-OBSDA are available at the following link. https://github.com/SHBLK/BSDA. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Science Foundation

U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Mathematical Multifaceted Integrated Capability Centers program

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3