DiscoRhythm: an easy-to-use web application and R package for discovering rhythmicity

Author:

Carlucci Matthew1,Kriščiūnas Algimantas12,Li Haohan1,Gibas Povilas12ORCID,Koncevičius Karolis12,Petronis Art12,Oh Gabriel1

Affiliation:

1. The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada

2. Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania

Abstract

Abstract Motivation Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is impeded by the extensive computational and statistical knowledge required to perform such analysis. Results To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an R/Bioconductor package for estimating phase, amplitude and statistical significance using four popular approaches to rhythm detection (Cosinor, JTK Cycle, ARSER and Lomb-Scargle). We optimized these algorithms for speed, improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time. Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling and incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity. Availability and implementation The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Canadian Institutes of Health Research

National Institute of Mental Health

Brain Canada and CAMH Foundation

Krembil Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference19 articles.

1. Circadian rhythms from multiple oscillators: lessons from diverse organisms;Bell-Pedersen;Nat. Rev. Genet,2005

2. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. Series B Stat. Methodol,1995

3. shiny: web application framework for R, 2015;Chang;R Package Version,2018

4. Cosinor-based rhythmometry;Cornelissen;Theor. Biol. Med. Model,2014

5. Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data;Deckard;Bioinformatics,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3