GeneGPT: augmenting large language models with domain tools for improved access to biomedical information

Author:

Jin Qiao1ORCID,Yang Yifan1,Chen Qingyu1ORCID,Lu Zhiyong1ORCID

Affiliation:

1. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, MD 20894, United States

Abstract

Abstract Motivation While large language models (LLMs) have been successfully applied to various tasks, they still face challenges with hallucinations. Augmenting LLMs with domain-specific tools such as database utilities can facilitate easier and more precise access to specialized knowledge. In this article, we present GeneGPT, a novel method for teaching LLMs to use the Web APIs of the National Center for Biotechnology Information (NCBI) for answering genomics questions. Specifically, we prompt Codex to solve the GeneTuring tests with NCBI Web APIs by in-context learning and an augmented decoding algorithm that can detect and execute API calls. Results Experimental results show that GeneGPT achieves state-of-the-art performance on eight tasks in the GeneTuring benchmark with an average score of 0.83, largely surpassing retrieval-augmented LLMs such as the new Bing (0.44), biomedical LLMs such as BioMedLM (0.08) and BioGPT (0.04), as well as GPT-3 (0.16) and ChatGPT (0.12). Our further analyses suggest that: First, API demonstrations have good cross-task generalizability and are more useful than documentations for in-context learning; second, GeneGPT can generalize to longer chains of API calls and answer multi-hop questions in GeneHop, a novel dataset introduced in this work; finally, different types of errors are enriched in different tasks, providing valuable insights for future improvements. Availability and implementation The GeneGPT code and data are publicly available at https://github.com/ncbi/GeneGPT.

Funder

NIH

National Library of Medicine

Publisher

Oxford University Press (OUP)

Reference35 articles.

1. Basic local alignment search tool;Altschul;J Mol Biol,1990

2. Blast: a more efficient report with usability improvements;Boratyn;Nucleic Acids Res,2013

3. Language models are few-shot learners;Brown;Advances in Neural Information Processing Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3