Predicting correlated outcomes from molecular data

Author:

Rauschenberger Armin1ORCID,Glaab Enrico1ORCID

Affiliation:

1. Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg

Abstract

Abstract Motivation Multivariate (multi-target) regression has the potential to outperform univariate (single-target) regression at predicting correlated outcomes, which frequently occur in biomedical and clinical research. Here we implement multivariate lasso and ridge regression using stacked generalization. Results Our flexible approach leads to predictive and interpretable models in high-dimensional settings, with a single estimate for each input–output effect. In the simulation, we compare the predictive performance of several state-of-the-art methods for multivariate regression. In the application, we use clinical and genomic data to predict multiple motor and non-motor symptoms in Parkinson’s disease patients. We conclude that stacked multivariate regression, with our adaptations, is a competitive method for predicting correlated outcomes. Availability and implementation The R package joinet is available on GitHub (https://github.com/rauschenberger/joinet) and cran (https://cran.r-project.org/package=joinet). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Luxembourg National Research Fund

National Centre for Excellence in Research on Parkinson’s disease

European Union’s Horizon 2020 research and innovation programme

Michael J. Fox Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference32 articles.

1. Polytomous logistic regression analysis could be applied more often in diagnostic research;Biesheuvel;J. Clin. Epidemiol,2008

2. Leveraging the nugget parameter for efficient Gaussian process modeling;Bostanabad;Int. J. Numer. Methods Eng,2018

3. Stacked regressions;Breiman;Mach. Learn,1996

4. Predicting multivariate responses in multiple linear regression;Breiman;J. R. Stat. Soc. Ser. B (Stat. Methodol.),1997

5. RMTL: an R library for multi-task learning;Cao;Bioinformatics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3