DeepLGP: a novel deep learning method for prioritizing lncRNA target genes

Author:

Zhao Tianyi1,Hu Yang2ORCID,Peng Jiajie3,Cheng Liang24ORCID

Affiliation:

1. College of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

2. College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China

3. School of Computer Science, Northwestern Polytechnical University, Xian, Shanxi 710072, China

4. NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150028, China

Abstract

Abstract Motivation Although long non-coding RNAs (lncRNAs) have limited capacity for encoding proteins, they have been verified as biomarkers in the occurrence and development of complex diseases. Recent wet-lab experiments have shown that lncRNAs function by regulating the expression of protein-coding genes (PCGs), which could also be the mechanism responsible for causing diseases. Currently, lncRNA-related biological data are increasing rapidly. Whereas, no computational methods have been designed for predicting the novel target genes of lncRNA. Results In this study, we present a graph convolutional network (GCN) based method, named DeepLGP, for prioritizing target PCGs of lncRNA. First, gene and lncRNA features were selected, these included their location in the genome, expression in 13 tissues and miRNA-mediated lncRNA–gene pairs. Next, GCN was applied to convolve a gene interaction network for encoding the features of genes and lncRNAs. Then, these features were used by the convolutional neural network for prioritizing target genes of lncRNAs. In 10-cross validations on two independent datasets, DeepLGP obtained high area under curves (0.90–0.98) and area under precision-recall curves (0.91–0.98). We found that lncRNA pairs with high similarity had more overlapped target genes. Further experiments showed that genes targeted by the same lncRNA sets had a strong likelihood of causing the same diseases, which could help in identifying disease-causing PCGs. Availability and implementation https://github.com/zty2009/LncRNA-target-gene. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Heilongjiang Province

National Natural Science Foundation of China

Heilongjiang Postdoctoral Fund

Young Innovative Talents in Colleges and Universities of Heilongjiang Province

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3