KRAGEN: a knowledge graph-enhanced RAG framework for biomedical problem solving using large language models

Author:

Matsumoto Nicholas1,Moran Jay1,Choi Hyunjun1,Hernandez Miguel E1,Venkatesan Mythreye1,Wang Paul1,Moore Jason H1ORCID

Affiliation:

1. Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center , West Hollywood, CA 90069, United States

Abstract

Abstract Motivation Answering and solving complex problems using a large language model (LLM) given a certain domain such as biomedicine is a challenging task that requires both factual consistency and logic, and LLMs often suffer from some major limitations, such as hallucinating false or irrelevant information, or being influenced by noisy data. These issues can compromise the trustworthiness, accuracy, and compliance of LLM-generated text and insights. Results Knowledge Retrieval Augmented Generation ENgine (KRAGEN) is a new tool that combines knowledge graphs, Retrieval Augmented Generation (RAG), and advanced prompting techniques to solve complex problems with natural language. KRAGEN converts knowledge graphs into a vector database and uses RAG to retrieve relevant facts from it. KRAGEN uses advanced prompting techniques: namely graph-of-thoughts (GoT), to dynamically break down a complex problem into smaller subproblems, and proceeds to solve each subproblem by using the relevant knowledge through the RAG framework, which limits the hallucinations, and finally, consolidates the subproblems and provides a solution. KRAGEN’s graph visualization allows the user to interact with and evaluate the quality of the solution’s GoT structure and logic. Availability and implementation KRAGEN is deployed by running its custom Docker containers. KRAGEN is available as open-source from GitHub at: https://github.com/EpistasisLab/KRAGEN.

Funder

National Institutes of Health USA

Publisher

Oxford University Press (OUP)

Reference12 articles.

1. Survey of Hallucination in Natural Language Generation

2. Retrieval-augmented generation for knowledge-intensive NLP tasks;Lewis;Adv Neural Inf Process Syst,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3