REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data

Author:

Yang Yang12,Pe’er Dana12

Affiliation:

1. Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York, NY 10065, United States

2. Howard Hughes Medical Institute , Chevy Chase, MD 20815, United States

Abstract

Abstract Motivation Profiling of gene expression and chromatin accessibility by single-cell multi-omics approaches can help to systematically decipher how transcription factors (TFs) regulate target gene expression via cis-region interactions. However, integrating information from different modalities to discover regulatory associations is challenging, in part because motif scanning approaches miss many likely TF binding sites. Results We develop REUNION, a framework for predicting genome-wide TF binding and cis-region-TF-gene “triplet” regulatory associations using single-cell multi-omics data. The first component of REUNION, Unify, utilizes information theory-inspired complementary score functions that incorporate TF expression, chromatin accessibility, and target gene expression to identify regulatory associations. The second component, Rediscover, takes Unify estimates as input for pseudo semi-supervised learning to predict TF binding in accessible genomic regions that may or may not include detected TF motifs. Rediscover leverages latent chromatin accessibility and sequence feature spaces of the genomic regions, without requiring chromatin immunoprecipitation data for model training. Applied to peripheral blood mononuclear cell data, REUNION outperforms alternative methods in TF binding prediction on average performance. In particular, it recovers missing region-TF associations from regions lacking detected motifs, which circumvents the reliance on motif scanning and facilitates discovery of novel associations involving potential co-binding transcriptional regulators. Newly identified region-TF associations, even in regions lacking a detected motif, improve the prediction of target gene expression in regulatory triplets, and are thus likely to genuinely participate in the regulation. Availability and implementation All source code is available at https://github.com/yangymargaret/REUNION.

Funder

National Cancer Institute

Cancer Center Support

NCI

Howard Hughes Medical Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3