Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons

Author:

Wei Xiaoqiong12ORCID,Zhang Chengxin2ORCID,Freddolino Peter L23,Zhang Yang23

Affiliation:

1. State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China

2. Department of Computational Medicine and Bioinformatics

3. Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Abstract Motivation Many protein function databases are built on automated or semi-automated curations and can contain various annotation errors. The correction of such misannotations is critical to improving the accuracy and reliability of the databases. Results We proposed a new approach to detect potentially incorrect Gene Ontology (GO) annotations by comparing the ratio of annotation rates (RAR) for the same GO term across different taxonomic groups, where those with a relatively low RAR usually correspond to incorrect annotations. As an illustration, we applied the approach to 20 commonly studied species in two recent UniProt-GOA releases and identified 250 potential misannotations in the 2018-11-6 release, where only 25% of them were corrected in the 2019-6-3 release. Importantly, 56% of the misannotations are ‘Inferred from Biological aspect of Ancestor (IBA)’ which is in contradiction with previous observations that attributed misannotations mainly to ‘Inferred from Sequence or structural Similarity (ISS)’, probably reflecting an error source shift due to the new developments of function annotation databases. The results demonstrated a simple but efficient misannotation detection approach that is useful for large-scale comparative protein function studies. Availability and implementation https://zhanglab.ccmb.med.umich.edu/RAR. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

National Science Foundation

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3