A hybrid constrained continuous optimization approach for optimal causal discovery from biological data

Author:

Zhu Yuehua12,Benos Panayiotis V3,Chikina Maria1

Affiliation:

1. Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, PA 15217, United States

2. School of Medicine, Tsinghua University , Beijing 100084, China

3. Department of Epidemiology, University of Florida , Gainesville, FL 32610, United States

Abstract

Abstract Motivation Understanding causal effects is a fundamental goal of science and underpins our ability to make accurate predictions in unseen settings and conditions. While direct experimentation is the gold standard for measuring and validating causal effects, the field of causal graph theory offers a tantalizing alternative: extracting causal insights from observational data. Theoretical analysis has shown that this is indeed possible, given a large dataset and if certain conditions are met. However, biological datasets, frequently, do not meet such requirements but evaluation of causal discovery algorithms is typically performed on synthetic datasets, which they meet all requirements. Thus, real-life datasets are needed, in which the causal truth is reasonably known. In this work we first construct such a large-scale real-life dataset and then we perform on it a comprehensive benchmarking of various causal discovery methods. Results We find that the PC algorithm is particularly accurate at estimating causal structure, including the causal direction which is critical for biological applicability. However, PC does only produces cause-effect directionality, but not estimates of causal effects. We propose PC-NOTEARS (PCnt), a hybrid solution, which includes the PC output as an additional constraint inside the NOTEARS optimization. This approach combines PC algorithm’s strengths in graph structure prediction with the NOTEARS continuous optimization to estimate causal effects accurately. PCnt achieved best aggregate performance across all structural and effect size metrics. Availability and implementation https://github.com/zhu-yh1/PC-NOTEARS.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Reference32 articles.

1. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response;Adamson;Cell,2016

2. Optimal structure identification with greedy search;Chickering;J Mach Learn Res,2002

3. Pooled CRISPR screening with single-cell transcriptome readout;Datlinger;Nat Methods,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3