Higher-order genetic interaction discovery with network-based biological priors

Author:

Pellizzoni Paolo123,Muzio Giulia12,Borgwardt Karsten123ORCID

Affiliation:

1. Department of Biosystems Science and Engineering, ETH Zurich , Basel, Switzerland

2. Swiss Institute for Bioinformatics (SIB) , Lausanne, Switzerland

3. Department of Machine Learning and Systems Biology, Max Planck Institute of Biochemistry , Martinsried, Germany

Abstract

Abstract Motivation Complex phenotypes, such as many common diseases and morphological traits, are controlled by multiple genetic factors, namely genetic mutations and genes, and are influenced by environmental conditions. Deciphering the genetics underlying such traits requires a systemic approach, where many different genetic factors and their interactions are considered simultaneously. Many association mapping techniques available nowadays follow this reasoning, but have some severe limitations. In particular, they require binary encodings for the genetic markers, forcing the user to decide beforehand whether to use, e.g. a recessive or a dominant encoding. Moreover, most methods cannot include any biological prior or are limited to testing only lower-order interactions among genes for association with the phenotype, potentially missing a large number of marker combinations. Results We propose HOGImine, a novel algorithm that expands the class of discoverable genetic meta-markers by considering higher-order interactions of genes and by allowing multiple encodings for the genetic variants. Our experimental evaluation shows that the algorithm has a substantially higher statistical power compared to previous methods, allowing it to discover genetic mutations statistically associated with the phenotype at hand that could not be found before. Our method can exploit prior biological knowledge on gene interactions, such as protein–protein interaction networks, genetic pathways, and protein complexes, to restrict its search space. Since computing higher-order gene interactions poses a high computational burden, we also develop a more efficient search strategy and support computation to make our approach applicable in practice, leading to substantial runtime improvements compared to state-of-the-art methods. Availability and implementation Code and data are available at https://github.com/BorgwardtLab/HOGImine

Funder

European Union’s Horizon 2020

Marie Skłodowska-Curie

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FASM and FAST-YB: Significant Pattern Mining with False Discovery Rate Control;2023 IEEE International Conference on Data Mining (ICDM);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3