greenPipes: an integrated data analysis pipeline for greenCUT&RUN and CUT&RUN genome-localization datasets

Author:

Nizamuddin Sheikh12ORCID,Timmers H T Marc12ORCID

Affiliation:

1. Department of Urology, Medical Center-University of Freiburg , Freiburg, 79016, Germany

2. German Cancer Consortium (DKTK), partnersite Freiburg, a partnership between the DKFZ and Medical Center-University of Freiburg , Germany

Abstract

Abstract Motivation To study gene regulation through transcription factors and chromatin modifiers, a variety of genome-wide techniques are used. Recently, CUT&RUN-based technologies have become popular, but a pipeline for the comprehensive analysis of CUT&RUN datasets is currently lacking. Here, we present the “greenPipes” package, which includes fine-tuned parameters specifically for bioinformatic analyses of greenCUT&RUN and CUT&RUN datasets. greenPipes provides additional functionalities for data analysis and data integration with other -omics technologies, which are either not available in other pipelines developed for CUT&RUN datasets or scattered in the literature as individual packages. Availability and implementation Source code and a manual of the greenPipes are freely available on GitHub website (https://github.com/snizam001/greenPipes). The test datasets, comprehensive annotation files, and other datasets are available at https://osf.io/ruhj9/. Contact n.sheikh@dkfz-heidelberg.de or m.timmers@dkfz-heidelberg.de Supplementary information The handbook of greenPipes is available online at Bioinformatics as Supplementary text.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Reference8 articles.

1. The nf-core framework for community-curated bioinformatics pipelines;Ewels;Nat Biotechnol,2020

2. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species;Gao;Nucleic Acids Res,2020

3. Improved methods for multi-trait fine mapping of pleiotropic risk loci;Kichaev;Bioinformatics,2017

4. Improved CUT&RUN chromatin profiling tools;Meers;Elife,2019

5. Integrating quantitative proteomics with accurate genome profiling of transcription factors by greenCUT&RUN;Nizamuddin;Nucleic Acids Res,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3