Gene set analysis with graph-embedded kernel association test

Author:

Qu Jialin1,Cui Yuehua1ORCID

Affiliation:

1. Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA

Abstract

Abstract Motivation Kernel-based association test (KAT) has been a popular approach to evaluate the association of expressions of a gene set (e.g. pathway) with a phenotypic trait. KATs rely on kernel functions which capture the sample similarity across multiple features, to capture potential linear or non-linear relationship among features in a gene set. When calculating the kernel functions, no network graphical information about the features is considered. While genes in a functional group (e.g. a pathway) are not independent in general due to regulatory interactions, incorporating regulatory network (or graph) information can potentially increase the power of KAT. In this work, we propose a graph-embedded kernel association test, termed gKAT. gKAT incorporates prior pathway knowledge when constructing a kernel function into hypothesis testing. Results We apply a diffusion kernel to capture any graph structures in a gene set, then incorporate such information to build a kernel function for further association test. We illustrate the geometric meaning of the approach. Through extensive simulation studies, we show that the proposed gKAT algorithm can improve testing power compared to the one without considering graph structures. Application to a real dataset further demonstrate the utility of the method. Availability and implementation The R code used for the analysis can be accessed at https://github.com/JialinQu/gKAT. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3