FAME: fast and memory efficient multiple sequences alignment tool through compatible chain of roots

Author:

Naznooshsadat Etminan1,Elham Parvinnia1,Ali Sharifi-Zarchi2

Affiliation:

1. Department of Computer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2. Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Abstract Motivation Multiple sequence alignment (MSA) is important and challenging problem of computational biology. Most of the existing methods can only provide a short length multiple alignments in an acceptable time. Nevertheless, when the researchers confront the genome size in the multiple alignments, the process has required a huge processing space/time. Accordingly, using the method that can align genome size rapidly and precisely has a great effect, especially on the analysis of the very long alignments. Herein, we have proposed an efficient method, called FAME, which vertically divides sequences from the places that they have common areas; then they are arranged in consecutive order. Then these common areas are shifted and placed under each other, and the subsequences between them are aligned using any existing MSA tool. Results The results demonstrate that the combination of FAME and the MSA methods and deploying minimizer are capable to be executed on personal computer and finely align long length sequences with much higher sum-of-pair (SP) score compared to the standalone MSA tools. As we select genomic datasets with longer length, the SP score of the combinatorial methods is gradually improved. The calculated computational complexity of methods supports the results in a way that combining FAME and the MSA tools leads to at least four times faster execution on the datasets. Availability and implementation The source code and all datasets and run-parameters are accessible free on http://github.com/naznoosh/msa. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3