FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction

Author:

Wen Gang1,Li Limin1ORCID

Affiliation:

1. School of Mathematics and Statistics, Xi’an Jiaotong University , Xi’an, Shaanxi 710049, China

Abstract

AbstractMotivationSurvival analysis is an important tool for modeling time-to-event data, e.g. to predict the survival time of patient after a cancer diagnosis or a certain treatment. While deep neural networks work well in standard prediction tasks, it is still unclear how to best utilize these deep models in survival analysis due to the difficulty of modeling right censored data, especially for multi-omics data. Although existing methods have shown the advantage of multi-omics integration in survival prediction, it remains challenging to extract complementary information from different omics and improve the prediction accuracy.ResultsIn this work, we propose a novel multi-omics deep survival prediction approach by dually fused graph convolutional network (GCN) named FGCNSurv. Our FGCNSurv is a complete generative model from multi-omics data to survival outcome of patients, including feature fusion by a factorized bilinear model, graph fusion of multiple graphs, higher-level feature extraction by GCN and survival prediction by a Cox proportional hazard model. The factorized bilinear model enables to capture cross-omics features and quantify complex relations from multi-omics data. By fusing single-omics features and the cross-omics features, and simultaneously fusing multiple graphs from different omics, GCN with the generated dually fused graph could capture higher-level features for computing the survival loss in the Cox-PH model. Comprehensive experimental results on real-world datasets with gene expression and microRNA expression data show that the proposed FGCNSurv method outperforms existing survival prediction methods, and imply its ability to extract complementary information for survival prediction from multi-omics data.Availability and implementationThe codes are freely available at https://github.com/LiminLi-xjtu/FGCNSurv.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3