Learning temporal difference embeddings for biomedical hypothesis generation

Author:

Zhou Huiwei1ORCID,Jiang Haibin1,Yao Weihong1,Du Xun1

Affiliation:

1. College of Computer Science and Technology, Dalian University of Technology , Dalian, Liaoning 116024, China

Abstract

Abstract Motivation Hypothesis generation (HG) refers to the discovery of meaningful implicit connections between disjoint scientific terms, which is of great significance for drug discovery, prediction of drug side effects and precision treatment. More recently, a few initial studies attempt to model the dynamic meaning of the terms or term pairs for HG. However, most existing methods still fail to accurately capture and utilize the dynamic evolution of scientific term relations. Results This article proposes a novel temporal difference embedding (TDE) learning framework to model the temporal difference information evolution of term-pair relations for predicting future interactions. Specifically, the HG problem is formulated as a future connectivity prediction task on a temporal sequence of a dynamic attributed graph. Our approach models both the local neighbor changes of the term-pairs and the changes of the global graph structure over time, learning local and global TDE of node-pairs, respectively. Future term-pair relations can be inferred in a recurrent network based on the local and global TDE. Experiments on three real-world biomedical term relationship datasets show the effectiveness and superiority of the proposed approach. Availability and implementation The data and source codes related to TDE are publicly available at https://github.com/Huiweizhou/TDE. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference22 articles.

1. T-pair: temporal node-pair embedding for automatic biomedical hypothesis generation;Akujuobi;IEEE Trans. Knowl. Data Eng,2020

2. Enriching plausible new hypothesis generation in pubmed;Baek;PLoS One.,2017

3. dyngraph2vec: capturing network dynamics using dynamic graph representation learning;Goyal;Knowledge-Based Syst,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3