Adaptive boosting-based computational model for predicting potential miRNA-disease associations

Author:

Zhao Yan1,Chen Xing1,Yin Jun1

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

AbstractMotivationRecent studies have shown that microRNAs (miRNAs) play a critical part in several biological processes and dysregulation of miRNAs is related with numerous complex human diseases. Thus, in-depth research of miRNAs and their association with human diseases can help us to solve many problems.ResultsDue to the high cost of traditional experimental methods, revealing disease-related miRNAs through computational models is a more economical and efficient way. Considering the disadvantages of previous models, in this paper, we developed adaptive boosting for miRNA-disease association prediction (ABMDA) to predict potential associations between diseases and miRNAs. We balanced the positive and negative samples by performing random sampling based on k-means clustering on negative samples, whose process was quick and easy, and our model had higher efficiency and scalability for large datasets than previous methods. As a boosting technology, ABMDA was able to improve the accuracy of given learning algorithm by integrating weak classifiers that could score samples to form a strong classifier based on corresponding weights. Here, we used decision tree as our weak classifier. As a result, the area under the curve (AUC) of global and local leave-one-out cross validation reached 0.9170 and 0.8220, respectively. What is more, the mean and the standard deviation of AUCs achieved 0.9023 and 0.0016, respectively in 5-fold cross validation. Besides, in the case studies of three important human cancers, 49, 50 and 50 out of the top 50 predicted miRNAs for colon neoplasms, hepatocellular carcinoma and breast neoplasms were confirmed by the databases and experimental literatures.Availability and implementationThe code and dataset of ABMDA are freely available at https://github.com/githubcode007/ABMDA.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3