Rapid multiple protein sequence search by parallel and heterogeneous computation

Author:

Li Jiefu1ORCID,Wang Ziyuan2ORCID,Fan Xuwei2,Yao Ruijie3,Zhang Guoqing14,Fan Rui2,Wang Zefeng145ORCID

Affiliation:

1. CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031, China

2. School of Information Science and Technology, ShanghaiTech University , Shanghai 201210, China

3. Institute of Intelligent Computing Technology, Chinese Academy of Sciences , 88 Jinjihu Avenue , Suzhou, Jiangsu 215000, China

4. Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031, China

5. School of Life Science, Southern University of Science and Technology , Shenzhen, Guangdong 518055, China

Abstract

Abstract Motivation Protein sequence database search and multiple sequence alignment generation is a fundamental task in many bioinformatics analyses. As the data volume of sequences continues to grow rapidly, there is an increasing need for efficient and scalable multiple sequence query algorithms for super-large databases without expensive time and computational costs. Results We introduce Chorus, a novel protein sequence query system that leverages parallel model and heterogeneous computation architecture to enable users to query thousands of protein sequences concurrently against large protein databases on a desktop workstation. Chorus achieves over 100× speedup over BLASTP without sacrificing sensitivity. We demonstrate the utility of Chorus through a case study of analyzing a ∼1.5-TB large-scale metagenomic datasets for novel CRISPR-Cas protein discovery within 30 min. Availability and implementation Chorus is open-source and its code repository is available at https://github.com/Bio-Acc/Chorus.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3