HOTSPOT: hierarchical host prediction for assembled plasmid contigs with transformer

Author:

Ji Yongxin1ORCID,Shang Jiayu1ORCID,Tang Xubo1ORCID,Sun Yanni1ORCID

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong , Hong Kong (SAR), China

Abstract

Abstract Motivation As prevalent extrachromosomal replicons in many bacteria, plasmids play an essential role in their hosts’ evolution and adaptation. The host range of a plasmid refers to the taxonomic range of bacteria in which it can replicate and thrive. Understanding host ranges of plasmids sheds light on studying the roles of plasmids in bacterial evolution and adaptation. Metagenomic sequencing has become a major means to obtain new plasmids and derive their hosts. However, host prediction for assembled plasmid contigs still needs to tackle several challenges: different sequence compositions and copy numbers between plasmids and the hosts, high diversity in plasmids, and limited plasmid annotations. Existing tools have not yet achieved an ideal tradeoff between sensitivity and precision on metagenomic assembled contigs. Results In this work, we construct a hierarchical classification tool named HOTSPOT, whose backbone is a phylogenetic tree of the bacterial hosts from phylum to species. By incorporating the state-of-the-art language model, Transformer, in each node’s taxon classifier, the top-down tree search achieves an accurate host taxonomy prediction for the input plasmid contigs. We rigorously tested HOTSPOT on multiple datasets, including RefSeq complete plasmids, artificial contigs, simulated metagenomic data, mock metagenomic data, the Hi-C dataset, and the CAMI2 marine dataset. All experiments show that HOTSPOT outperforms other popular methods. Availability and implementation The source code of HOTSPOT is available via: https://github.com/Orin-beep/HOTSPOT

Funder

City University of Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3