SBbadger: biochemical reaction networks with definable degree distributions

Author:

Kochen Michael A1ORCID,Wiley H Steven2,Feng Song3,Sauro Herbert M1ORCID

Affiliation:

1. Department of Bioengineering, University of Washington , Seattle, WA 98105, USA

2. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, WA, 99354, USA

3. Biological Science Division, Pacific Northwest National Laboratory , Richland, WA 99354, USA

Abstract

Abstract Motivation An essential step in developing computational tools for the inference, optimization and simulation of biochemical reaction networks is gauging tool performance against earlier efforts using an appropriate set of benchmarks. General strategies for the assembly of benchmark models include collection from the literature, creation via subnetwork extraction and de novo generation. However, with respect to biochemical reaction networks, these approaches and their associated tools are either poorly suited to generate models that reflect the wide range of properties found in natural biochemical networks or to do so in numbers that enable rigorous statistical analysis. Results In this work, we present SBbadger, a python-based software tool for the generation of synthetic biochemical reaction or metabolic networks with user-defined degree distributions, multiple available kinetic formalisms and a host of other definable properties. SBbadger thus enables the creation of benchmark model sets that reflect properties of biological systems and generate the kinetics and model structures typically targeted by computational analysis and inference software. Here, we detail the computational and algorithmic workflow of SBbadger, demonstrate its performance under various settings, provide sample outputs and compare it to currently available biochemical reaction network generation software. Availability and implementation SBbadger is implemented in Python and is freely available at https://github.com/sys-bio/SBbadger and via PyPI at https://pypi.org/project/SBbadger/. Documentation can be found at https://SBbadger.readthedocs.io. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Cancer Institute

National Institutes of Health

University of Washington

PNNL

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference45 articles.

1. Topology of evolving networks: local events and universality;Albert;Phys. Rev. Lett,2000

2. Physicochemical modelling of cell signalling pathways;Aldridge;Nat. Cell Biol,2006

3. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways;Alves;Biotechnol. Genet. Eng. Rev,2008

4. Systems biology: parameter estimation for biochemical models;Ashyraliyev;FEBS J,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3