PHi-C2: interpreting Hi-C data as the dynamic 3D genome state

Author:

Shinkai Soya1ORCID,Itoga Hiroya1ORCID,Kyoda Koji1ORCID,Onami Shuichi12ORCID

Affiliation:

1. Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research , Kobe 650-0047, Japan

2. Life Science Data Sharing Unit, Infrastructure Research and Development Division, RIKEN Information R&D and Strategy Headquarters , Kobe 650-0047, Japan

Abstract

Abstract Summary High-throughput chromosome conformation capture (Hi-C) is a widely used assay for studying the three-dimensional (3D) genome organization across the whole genome. Here, we present PHi-C2, a Python package supported by mathematical and biophysical polymer modeling that converts input Hi-C matrix data into the polymer model’s dynamics, structural conformations and rheological features. The updated optimization algorithm for regenerating a highly similar Hi-C matrix provides a fast and accurate optimal solution compared to the previous version by eliminating the factors underlying the inefficiency of the optimization algorithm in the iterative optimization process. In addition, we have enabled a Google Colab workflow to run the algorithm, wherein users can easily change the parameters and check the results in the notebook. Overall, PHi-C2 represents a valuable tool for mining the dynamic 3D genome state embedded in Hi-C data. Availability and implementation PHi-C2 as the phic Python package is freely available under the GPL license and can be installed from the Python package index. The source code is available from GitHub at https://github.com/soyashinkai/PHi-C2. Moreover, users do not have to prepare a Python environment because PHi-C2 can run on Google Colab (https://bit.ly/3rlptGI). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Japan Society for the Promotion of Science KAKENHI

RIKEN BDR Structural Cell Biology Project

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3