Efficient privacy-preserving whole-genome variant queries

Author:

Akgün Mete1234ORCID,Pfeifer Nico256,Kohlbacher Oliver237ORCID

Affiliation:

1. Medical Data Privacy and Privacy-Preserving ML on Healthcare Data, Department of Computer Science, University of Tübingen , Tübingen, Germany

2. Institute for Bioinformatics and Medical Informatics, University of Tübingen , Tübingen, Germany

3. Translational Bioinformatics, University Hospital Tübingen , Tübingen, Germany

4. Department of Computer Engineering, İzmir Institute of Technology , İzmir, Turkey

5. Methods in Medical Informatics, Department of Computer Science, University of Tübingen , Tübingen, Germany

6. Statistical Learning in Computational Biology, Max Planck Institute for Informatics , Saarbrücken, Germany

7. Applied Bioinformatics, Department of Computer Science, University of Tübingen , Tübingen, Germany

Abstract

Abstract Motivation Diagnosis and treatment decisions on genomic data have become widespread as the cost of genome sequencing decreases gradually. In this context, disease–gene association studies are of great importance. However, genomic data are very sensitive when compared to other data types and contains information about individuals and their relatives. Many studies have shown that this information can be obtained from the query-response pairs on genomic databases. In this work, we propose a method that uses secure multi-party computation to query genomic databases in a privacy-protected manner. The proposed solution privately outsources genomic data from arbitrarily many sources to the two non-colluding proxies and allows genomic databases to be safely stored in semi-honest cloud environments. It provides data privacy, query privacy and output privacy by using XOR-based sharing and unlike previous solutions, it allows queries to run efficiently on hundreds of thousands of genomic data. Results We measure the performance of our solution with parameters similar to real-world applications. It is possible to query a genomic database with 3 000 000 variants with five genomic query predicates under 400 ms. Querying 1 048 576 genomes, each containing 1 000 000 variants, for the presence of five different query variants can be achieved approximately in 6 min with a small amount of dedicated hardware and connectivity. These execution times are in the right range to enable real-world applications in medical research and healthcare. Unlike previous studies, it is possible to query multiple databases with response times fast enough for practical application. To the best of our knowledge, this is the first solution that provides this performance for querying large-scale genomic data. Availability and implementation https://gitlab.com/DIFUTURE/privacy-preserving-variant-queries. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

German Ministry of Research and Education

German Federal Ministry of Education and Research

DIFUTURE

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3