RNAcmap: a fully automatic pipeline for predicting contact maps of RNAs by evolutionary coupling analysis

Author:

Zhang Tongchuan1ORCID,Singh Jaswinder2ORCID,Litfin Thomas1,Zhan Jian1,Paliwal Kuldip2,Zhou Yaoqi13ORCID

Affiliation:

1. Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, Queensland 4222, Australia

2. Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, Queensland 4111, Australia

3. Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China

Abstract

Abstract Motivation The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. Results We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. Availability and implementation RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Australia Research Council

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3