Copy number evolution with weighted aberrations in cancer

Author:

Zeira Ron1,Raphael Benjamin J1

Affiliation:

1. Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

Abstract

Abstract Motivation Copy number aberrations (CNAs), which delete or amplify large contiguous segments of the genome, are a common type of somatic mutation in cancer. Copy number profiles, representing the number of copies of each region of a genome, are readily obtained from whole-genome sequencing or microarrays. However, modeling copy number evolution is a substantial challenge, because different CNAs may overlap with one another on the genome. A recent popular model for copy number evolution is the copy number distance (CND), defined as the length of a shortest sequence of deletions and amplifications of contiguous segments that transforms one profile into the other. In the CND, all events contribute equally; however, it is well known that rates of CNAs vary by length, genomic position and type (amplification versus deletion). Results We introduce a weighted CND that allows events to have varying weights, or probabilities, based on their length, position and type. We derive an efficient algorithm to compute the weighted CND as well as the associated transformation. This algorithm is based on the observation that the constraint matrix of the underlying optimization problem is totally unimodular. We show that the weighted CND improves phylogenetic reconstruction on simulated data where CNAs occur with varying probabilities, aids in the derivation of phylogenies from ultra-low-coverage single-cell DNA sequencing data and helps estimate CNA rates in a large pan-cancer dataset. Availability and implementation Code is available at https://github.com/raphael-group/WCND. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

NIH

National Science Foundation

NSF

O’Brien Family Fund for Health Research

Wilke Family Fund for Innovation

Chan Zuckerberg Initiative DAF

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3