Prediction of protein group function by iterative classification on functional relevance network

Author:

Khan Ishita K12,Jain Aashish1,Rawi Reda34,Bensmail Halima3,Kihara Daisuke15ORCID

Affiliation:

1. Department of Computer Science, Purdue University, West Lafayette, IN, USA

2. eBay Search Science, San Jose, CA, USA

3. Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar

4. Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

5. Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

Abstract

Abstract Motivation Biological experiments including proteomics and transcriptomics approaches often reveal sets of proteins that are most likely to be involved in a disease/disorder. To understand the functional nature of a set of proteins, it is important to capture the function of the proteins as a group, even in cases where function of individual proteins is not known. In this work, we propose a model that takes groups of proteins found to work together in a certain biological context, integrates them into functional relevance networks, and subsequently employs an iterative inference on graphical models to identify group functions of the proteins, which are then extended to predict function of individual proteins. Results The proposed algorithm, iterative group function prediction (iGFP), depicts proteins as a graph that represents functional relevance of proteins considering their known functional, proteomics and transcriptional features. Proteins in the graph will be clustered into groups by their mutual functional relevance, which is iteratively updated using a probabilistic graphical model, the conditional random field. iGFP showed robust accuracy even when substantial amount of GO annotations were missing. The perspective of ‘group’ function annotation opens up novel approaches for understanding functional nature of proteins in biological systems. Availability and implementation: http://kiharalab.org/iGFP/ Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3