scPRAM accurately predicts single-cell gene expression perturbation response based on attention mechanism

Author:

Jiang Qun1ORCID,Chen Shengquan2ORCID,Chen Xiaoyang1,Jiang Rui1ORCID

Affiliation:

1. MOE Key Laboratory of Bioinformatics and Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University , Beijing 100084, China

2. School of Mathematical Sciences and LPMC, Nankai University , Tianjin 300071, China

Abstract

Abstract Motivation With the rapid advancement of single-cell sequencing technology, it becomes gradually possible to delve into the cellular responses to various external perturbations at the gene expression level. However, obtaining perturbed samples in certain scenarios may be considerably challenging, and the substantial costs associated with sequencing also curtail the feasibility of large-scale experimentation. A repertoire of methodologies has been employed for forecasting perturbative responses in single-cell gene expression. However, existing methods primarily focus on the average response of a specific cell type to perturbation, overlooking the single-cell specificity of perturbation responses and a more comprehensive prediction of the entire perturbation response distribution. Results Here, we present scPRAM, a method for predicting perturbation responses in single-cell gene expression based on attention mechanisms. Leveraging variational autoencoders and optimal transport, scPRAM aligns cell states before and after perturbation, followed by accurate prediction of gene expression responses to perturbations for unseen cell types through attention mechanisms. Experiments on multiple real perturbation datasets involving drug treatments and bacterial infections demonstrate that scPRAM attains heightened accuracy in perturbation prediction across cell types, species, and individuals, surpassing existing methodologies. Furthermore, scPRAM demonstrates outstanding capability in identifying differentially expressed genes under perturbation, capturing heterogeneity in perturbation responses across species, and maintaining stability in the presence of data noise and sample size variations. Availability and implementation https://github.com/jiang-q19/scPRAM and https://doi.org/10.5281/zenodo.10935038.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3