Co-phosphorylation networks reveal subtype-specific signaling modules in breast cancer

Author:

Ayati Marzieh1ORCID,Chance Mark R234,Koyutürk Mehmet345

Affiliation:

1. Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

2. Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA

3. Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA

4. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA

5. Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA

Abstract

Abstract Motivation Protein phosphorylation is a ubiquitous mechanism of post-translational modification that plays a central role in cellular signaling. Phosphorylation is particularly important in the context of cancer, as downregulation of tumor suppressors and upregulation of oncogenes by the dysregulation of associated kinase and phosphatase networks are shown to have key roles in tumor growth and progression. Despite recent advances that enable large-scale monitoring of protein phosphorylation, these data are not fully incorporated into such computational tasks as phenotyping and subtyping of cancers. Results We develop a network-based algorithm, CoPPNet, to enable unsupervised subtyping of cancers using phosphorylation data. For this purpose, we integrate prior knowledge on evolutionary, structural and functional association of phosphosites, kinase–substrate associations and protein–protein interactions with the correlation of phosphorylation of phosphosites across different tumor samples (a.k.a co-phosphorylation) to construct a context-specific-weighted network of phosphosites. We then mine these networks to identify subnetworks with correlated phosphorylation patterns. We apply the proposed framework to two mass-spectrometry-based phosphorylation datasets for breast cancer (BC), and observe that (i) the phosphorylation pattern of the identified subnetworks are highly correlated with clinically identified subtypes, and (ii) the identified subnetworks are highly reproducible across datasets that are derived from different studies. Our results show that integration of quantitative phosphorylation data with network frameworks can provide mechanistic insights into the differences between the signaling mechanisms that drive BC subtypes. Furthermore, the reproducibility of the identified subnetworks suggests that phosphorylation can provide robust classification of disease response and markers. Availability and implementation CoPPNet is available at http://compbio.case.edu/coppnet/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

US National Institute of Health

NIH

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3