A reformulation of pLSA for uncertainty estimation and hypothesis testing in bio-imaging

Author:

Tar P D12,Thacker N A1,Deepaisarn S1,O’Connor J P B2,McMahon A W1

Affiliation:

1. Division of Informatics, Imaging and Data Sciences

2. Division of Cancer Sciences, The University of Manchester, M13 9PG Manchester, UK

Abstract

Abstract Motivation Probabilistic latent semantic analysis (pLSA) is commonly applied to describe mass spectra (MS) images. However, the method does not provide certain outputs necessary for the quantitative scientific interpretation of data. In particular, it lacks assessment of statistical uncertainty and the ability to perform hypothesis testing. We show how linear Poisson modelling advances pLSA, giving covariances on model parameters and supporting χ2 testing for the presence/absence of MS signal components. As an example, this is useful for the identification of pathology in MALDI biological samples. We also show potential wider applicability, beyond MS, using magnetic resonance imaging (MRI) data from colorectal xenograft models. Results Simulations and MALDI spectra of a stroke-damaged rat brain show MS signals from pathological tissue can be quantified. MRI diffusion data of control and radiotherapy-treated tumours further show high sensitivity hypothesis testing for treatment effects. Successful χ2 and degrees-of-freedom are computed, allowing null-hypothesis thresholding at high levels of confidence. Availability and implementation Open-source image analysis software available from TINA Vision, www.tina-vision.net. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

CRUK

EPSRC Imaging Centre

CRUK advanced clinician scientist fellowship

DPST scholarship

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3