κ-helix and the helical lock and key model: a pivotal way of looking at polyproline II

Author:

Meirson Tomer12ORCID,Bomze David3,Markel Gal24,Samson Abraham O1

Affiliation:

1. Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel

2. Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel

3. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel

4. Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel

Abstract

Abstract Motivation Polyproline II (PPII) is a common conformation, comparable to α-helix and β-sheet. PPII, recently termed with a more generic name—κ-helix, adopts a left-handed structure with 3-fold rotational symmetry. Lately, a new type of binding mechanism—the helical lock and key model was introduced in SH3-domain complexes, where the interaction is characterized by a sliding helical pattern. However, whether this binding mechanism is unique only to SH3 domains is unreported. Results Here, we show that the helical binding pattern is a universal feature of the κ-helix conformation, present within all the major target families—SH3, WW, profilin, MHC-II, EVH1 and GYF domains. Based on a geometric analysis of 255 experimentally solved structures, we found that they are characterized by a distinctive rotational angle along the helical axis. Furthermore, we found that the range of helical pitch varies between different protein domains or peptide orientations and that the interaction is also represented by a rotational displacement mimicking helical motion. The discovery of rotational interactions as a mechanism, reveals a new dimension in the realm of protein–protein interactions, which introduces a new layer of information encoded by the helical conformation. Due to the extensive involvement of the conformation in functional interactions, we anticipate our model to expand the current molecular understanding of the relationship between protein structure and function. Availability and implementation We have implemented the proposed methods in an R package freely available at https://github.com/Grantlab/bio3d. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Leir foundation

Ginzburg foundation

Foulkes Foundation fellowship

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3