pyPESTO: a modular and scalable tool for parameter estimation for dynamic models

Author:

Schälte Yannik123ORCID,Fröhlich Fabian4,Jost Paul J1,Vanhoefer Jakob1,Pathirana Dilan1,Stapor Paul23,Lakrisenko Polina25,Wang Dantong23,Raimúndez Elba123,Merkt Simon1,Schmiester Leonard23ORCID,Städter Philipp236,Grein Stephan1,Dudkin Erika1,Doresic Domagoj1,Weindl Daniel2ORCID,Hasenauer Jan123ORCID

Affiliation:

1. Life and Medical Sciences (LIMES) Institute, University of Bonn , 53113 Bonn, Germany

2. Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) , 85764 Neuherberg, Germany

3. Department of Mathematics, Technical University of Munich , 85748 Garching, Germany

4. Department of Systems Biology, Harvard Medical School , Boston, MA 02115, United States

5. School of Life Sciences, Technical University of Munich , 85354 Freising, Germany

6. Leibniz Institute for Natural Product Research and Infection Biology , 07745 Jena, Germany

Abstract

Abstract Summary Mechanistic models are important tools to describe and understand biological processes. However, they typically rely on unknown parameters, the estimation of which can be challenging for large and complex systems. pyPESTO is a modular framework for systematic parameter estimation, with scalable algorithms for optimization and uncertainty quantification. While tailored to ordinary differential equation problems, pyPESTO is broadly applicable to black-box parameter estimation problems. Besides own implementations, it provides a unified interface to various popular simulation and inference methods. Availability and implementation pyPESTO is implemented in Python, open-source under a 3-Clause BSD license. Code and documentation are available on GitHub (https://github.com/icb-dcm/pypesto).

Funder

German Research Foundation

Germany’s Excellence Strategy

Human Frontier Science Program

German Federal Ministry of Education and Research

Joachim Herz Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3